Author’s Note.

I’ve been sidelined with some health issues the past few weeks, and have not been able to post any new blogs. The natural world marched ahead without me during that time with earthquakes in Japan and Ecuador, floods in Texas, volcanic eruptions in the Aleutians, tornadoes in the South and Midwest, and a continuing drought in the US Southwest. As my stamina gradually returns, I plan to resume blogging from time to time on natural disasters and natural phenomena.

The main recent item of note has been the report that the South Pole Observatory in Antarctica has recorded a CO2 level of 400 parts per million (ppm) for the first time. With that event, every reporting station in the world has now reached or exceeded the 400 ppm mark. The last time the planet’s atmosphere was that high in CO2 was 4 million years ago, according to an article published by the Guardian’s Climate Central dated June 16, 2016.

The burning of fossil fuels continues to elevate the amount of CO2 in the air, and continues to heat the planet. Since 1900, global temperature has risen 1.8°F (1.0°C), sea levels have increased by a foot (30cm). Since 1980, Arctic sea ice volume has decreased by 35%. Because much of the excess carbon in the atmosphere settles in the sea, the acidity of our oceans is the highest it has been in millions of years. Coral reefs are dying and some shellfish populations are dwindling.

We hope the Paris Accords in which all nations agreed to reduce carbon emissions, will be honored by all signatories, giving our planet a chance to have clean air and put the brakes on global warming.


Storms, Satellites, & Methane

Storms. Hurricane Gonzolo was downgraded from a Category 4 to a Category 3, and finally to a Category 2 storm when it struck Bermuda on Friday, Oct. 17, 2014, with sustained winds of 110mpn (175km/h). No deaths or injuries were reported, but the island suffered heavy wind and rain damage, power outages, and storm surge flooding from 40 ft. (12m) waves. Gonzolo is expected to track north from Bermuda, grazing Newfoundland, and then curving east toward the British Isles.

Also on October 17, out in the Pacific, Tropical Storm Ana which was headed for Hawaii with sustained winds of 80mph (135kmh) veered south and missed the Big Island by 155 miles (250km). Ana’s outer bands brought some wind and rain to the islands.

New Satellites. On Sept. 20, 2014, NASA launched JPL’s RapidScat to help meteorologists spot hurricanes developing in their earliest stages. RapidScat, lodged on the exterior of the International Space Station (ISS), measures surface wind speed and direction over the ocean. Using this early information, weather forecasters are able to make much more accurate predictions about a storm’s eventual path and strength.

NASA’s SMAP satellite, scheduled for launch in January, 2015, will provide high resolution global measurements of soil moisture, which is critical for plant growth and recharging underground water supplies. SMAP data will aid in predictions of agricultural productivity, improve weather and climate forecasts, and gauge severity of droughts and where floods might occur.

Methane. Hydraulic fracturing, or fracking, is making it possible for energy producers in the US to tap into new underground gas supplies. As a result, natural gas, which is 80% to 95% methane, is plentiful and relatively cheap. More and more, industry is switching from coal to natural gas to generate power and run factories. Good news and bad news. Natural gas is less polluting than coal, but burning it still pumps 7 billion tons of methane into the atmosphere every year. Also, many believe that fracking is bad for the environment, tainting aquifers, causing earthquakes, and releasing methane into the air. Energy producers say such charges are yet to be proven.

According to a study conducted by DOE’s Pacific Northwest Laboratory and 5 teams of international climate scientists, and published in Nature Advanced Online Publication on October 14, 2014, the switch to natural gas is doing nothing to slow global warming. The low price and plentiful supply encourages industry to burn gas and continue polluting, and postpones for many years any serious efforts by industry to fully develop non-polluting energy sources such as wind, thermal, and solar. The trade-off is temporarily good for the pocketbook, but continues to heat the planet and pollute the air we breathe.

Siberian Mystery Holes

In September, 2013, people living in the Yamal district of Siberia, where the ground is frozen year round, reported seeing smoke rising from a patch of nearby permafrost. On September 27, 2013, the patch exploded and a crater measuring 30m (98 ft) wide and 70m (230 ft) deep appeared. Scientist Marina Liebman of the Russian Academy of Sciences believes the explosion was caused by methane, the main component of natural gas, building up and compressing inside a subsurface pocket.

Two additional holes in the Siberian permafrost were reported in July, 2014. The new holes are as deep as the first, 70 to 90m (200 to 300 ft), but had smaller openings – diameters of 15m (49ft) and 4m (13 ft). The prevailing theory is that global warming is causing thawing of the Siberian permafrost in spots. The thawing permafrost releases methane, a product of the billions of tons of decomposing organic material that has been trapped beneath hundreds of feet of frozen earth for thousands of years. The methane rises through cracks in the earth and into air pockets just below the surface.

Blasts of methane gushed into the air when the pockets erupted, causing the methane content in the regional atmosphere to rise. There has been some speculation that methane will continue to pour out of these holes, that more holes will appear, and that the “dragon’s breath” of escaping methane will load the atmosphere with methane, which is 20 times stronger than CO2 in trapping radiation and heating the planet. Air content measurements taken since the eruptions show a slight rise in methane, but nothing alarming, putting the doomsday speculation into question.

Nevertheless, the arctic is warming at the rate of 0.5C (0.9F) every 10 years, a faster pace than anyplace else on earth. Because of this rapid rate of warming, most scientists anticipate a gradual increase in thaw rate and the escape into the atmosphere of greater amounts of methane.

How fast and how much is a matter under study. It depends largely on how soon the people occupying our planet can reduce their dependence on fossil fuels. If we continue to pour billions of tons of carbon dioxide into the air every year by burning ever increasing amounts of oil, gas, and coal, the added methane in the atmosphere could heat the planet beyond anything previously experienced by mankind. On the other hand, by cutting back on the burning of fossil fuels, and replacing them with wind, solar, thermal, and other forms of renewable energy, we may be able to stave off the coming of a super hot earth.