When Volcanoes Endanger Aircraft

In a report issued by U.S. Geological Survey, there were 94 confirmed ash-cloud encounters by aircraft between 1953 and 2009. 79 of those produced various degrees of engine or airframe damage. 26 encounters involved significant to very severe damage, and 9 caused engine shutdown during flight.

Two of the most well known incidents involved passenger jets flown by KLM and British Airways. On June 24, 1982, British Airways Flight 9 flying at 37,000 ft. (11,000m) from London to Auckland, New Zealand, with 248 passengers and a crew of 15, entered an ash cloud rising from the erupting Mt. Galunggung volcano in Indonesia. All 4 engines flamed out due to the silica in the volcanic ash melting inside the engines and coating everything with glass. The plane had dropped 23,500 ft. (4,200m) before the crew was able to restart 3 of the engines and make an emergency landing in Jakarta.

On December 15, 1989, KLM Flight 867 from Amsterdam to Tokyo flew through a thick ash cloud from Alaska’s Mt. Redoubt volcano as the 747 started its descent into Anchorage. All 4 engines failed, and the plane lost 14,000 ft. (4,400m) in altitude before the crew could restart the engines and make a safe landing. The ingested ash caused $80 million in damage to the aircraft, including replacement of all 4 engines. The expertise of the air crews in both cases averted what could have been disastrous crashes.

The aviation industry learned from those incidents and started grounding all flights when volcanic ash was present. That’s why most European and North Atlantic flights were cancelled between April 15 and April 20, 2010, when Iceland’s Mt. Eyjafjallajökull erupted, ejecting 250 million cubic meters (330 million cubic yards) of volcanic ash into the atmosphere. The ash cloud drifted west, covering the sky over the North Atlantic and most of Europe. Many thousands of passengers were stranded in European airports for up to 5 days.

Ash clouds are hard to distinguish from moisture clouds either visually or by radar. That’s why aircraft continue to wander into them, and why the United Nations has set up a network of Volcanic Ash Advisory Centers (VAAC). There are 9 centers located around the world, each covering a geographic region. When an eruption produces an ash cloud, the VAAC in that area uses a computer model to predict the path of the cloud at different flight levels and issues an international alert. VAACs are located in Alaska, Argentina, Australia, England, Canada, Japan, France, and Washington, DC. Fewer incidents have been reported since the centers have been in full operation.

On average, 15 major explosive volcanic eruptions powerful enough to eject tons of ash into the stratosphere occur each year. A sudden Mt. St. Helens or Mt. Pinatubo type of super explosion can eject massive amounts of ash into the stratosphere in minutes, creating unexpected hazardous conditions. Air crews must stay ready to act immediately on VAAC ash alerts, and take the necessary evasive action to keep their flights safe and uneventful.  

 

  

The Next Tsunami — Where?

According to USGS, two North American fault line systems are at a critical stage. In a December 29, 2013, news release, USGS states that enough strain may be currently stored in an earthquake zone near the Caribbean island of Guadeloupe to cause a magnitude 8 or larger earthquake and subsequent tsunami. The release goes on to say that USGS and French researchers studying the plate boundary where 20 of the 26 Caribbean islands are located, estimate that enough unreleased strain may have accumulated to create a magnitude 8.0 to 8.4 earthquake. A 7.5-8.5 quake in the same area in 1843 killed thousands in Guadeloupe. A similar quake in the future could cause many hundreds of fatalities and hundreds of billions US dollars in damages. An accompanying tsunami could inflict an even higher toll.

The other fault zone considered to be due for a major failure lies off the northwestern US coastline. The Cascadia Subduction Zone runs 1,100km (700 mi) from Vancouver Island in British Columbia to Cape Mendocino in northern California. Recent studies indicate that a 60km (40 mi) segment of the fault off the coast of Washington is locked. In geological terms, locked means a point where the converging plates have been pressing together without releasing energy, perhaps for hundreds of years. The strain constantly builds until the fault’s frictional strength is exceeded and it finally ruptures.

The last major earthquake and tsunami on the Cascadia struck in 1700. That 9.0 quake triggered a tsunami that flattened trees many miles inland in Washington state, and rolled across the Pacific to inflict damage on Japanese coastal villages. The northwest was sparsely inhabited at that time, so there were no known casualties. A similar earthquake and tsunami today could be catastrophic. A study commissioned by the Oregon legislature concluded that in Oregon alone a Cascadia 9.0 earthquake and tsunami could kill 10,000 and cost $30 billion in damages.

Megathrust earthquakes and tsunamis have occurred on the Cascadia every 300 to 600 years. It has been a little over 300 years since the last one. The Oregonian newspaper recently reported that some geologists are predicting a 10% to 14% probability that the Cascadia will produce a magnitude 9.0 or greater earthquake within the next 50 years. An article in Science Daily  suggests that the risk could be as high as 37% for a magnitude 8.0 or greater in the same period.

Still, it’s impossible to say where or when the next big one will strike. Even though the Caribbean and Cascadia faults appear ready to go, the 4 ocean trench fault zones that have produced the biggest earthquakes and tsunamis of the recent past should not be ruled out. The Japan Trench off the northeastern coast of Honshu produced the 9.0 quake in 2011 that killed 20,000. The 2004 Indian Ocean 9.1 earthquake and tsunami that killed more than 200,000 started in the 2,600km (1,600 mi)-long Sunda Trench. The Great Alaska Earthquake, a magnitude 9.2 that struck on Good Friday in 1964, originated in the Aleutian Trench. The Atacama Trench off the coast of South America generated the largest earthquake on record, a magnitude 9.5 that struck off the coast of Chile in 1960, killing 5,000 and sending a tsunami speeding thousands of miles across the Pacific Ocean. These 4 ocean trench fault zones mark the convergence of highly active tectonic plates. All are part of the Pacific Ring of Fire.

Will Yellowstone Erupt?

The magma chamber that powers Old Faithful and the other geysers. hot springs, fumaroles, and mud pots of Yosemite National Park is considered by scientists to be the largest in the world. And a new study by researchers at the University of Utah finds that the chamber underlying Yellowstone is far larger than originally thought in terms of both size and amount of molten rock it contains.

According to the study, the Yellowstone Volcano magma chamber is 2.5 times larger than earlier estimates. By using a network of seismometers situated around the park, the research team found that the magma cavern is 90km (55 mi) long, 30km (20 mi) wide, and up to 15km (10mi) deep, containing up to 600 cubic km (144 cubic mi) of hot gas and molten rock.

Geologic research indicates Yellowstone Volcano erupts every 700,000 years. In the last three events – 2.1 million, 1.3 million, and 640,000 years ago — the magma chamber emptied out in a single violent volcanic blast. Millions of tons of rocks, sulfur dioxide, and ash rocketed into the atmosphere, blocking sunlight around the world . The empty chamber collapsed, forming a geographic depression or caldera, and the land for thousands of miles around was blanketed with a thick coat of ash.

The park floor has been rising as the magma chamber continues to swell. Between 2004 and 2009, Yellowstone’s ground uplifted 20cm (8 in), but since 2010 the uplift has continued at a slower pace. The park experiences between 1,000 and 3,000 earthquakes a year as the magma moves into the chamber. Most are less than Magnitude 3.0 and are seldom felt by park visitors. Scientists believe the next supereruption will occur sometime in the next 40,000 years. When and if it blows, it will cause disastrous damage and loss of life in a wide area around the volcano.

Yellowstone sits atop a volcanic hotspot, a pocket deep in the earth that sends a plume of molten rock and hot gas rising into a magma chamber just below earth’s crust. Both the hotspot and the magma chamber are stationary, but the North American Plate, the section of crust upon which Yellowstone is situated, constantly moves southwesterly at 2.5cm (approx. 1 in) a year. Over the past 16.5 million years, as the North American Plate has slowly moved over the hotspot, 15 to 20 massive eruptions have left immense craters dotting the landscape from the Nevada-Oregon border through Idaho’s Snake River Plain. Plate movement eventually positioned the hotspot and magma chamber under Yellowstone. Over the next 16 million years, plate movement will progressively move the hotspot under Montana, North Dakota, and Canada. As the North American Plate moves Yellowstone away from the hotspot over the expanse of geologic time, the park’s geysers will gradually die.

But for now the park’s thermal features remain alive and well and will stay that way over the next few million years. Although the possibility of a blowout remains, USGS and National Park Service scientists with the Yellowstone Volcano Observatory state that they “see no evidence that another such cataclysmic eruption will occur in the foreseeable future.”

Tsunami & Earthquake Networks

Someplace on earth the ground is shaking. According to USGS estimates, there are an average of 1,300,000 earthquakes on our planet every year, or one every 24 seconds. 98% of those quakes are under magnitude 4.0 and many occur in remote locations, so most of us are unaware of the constant seismic activity, even when it happens close by.

However between 1,500 and 2,000 annual quakes are in the magnitude 5.0 to 9.0 range. Those are the quakes that can do damage on land, and possibly trigger a tsunami if one strong enough hits on the seafloor where tectonic plates converge.

Where do USGS and other reporting centers get their real time information? Two worldwide seismic hazard networks report earthquakes as they happen, and provide early warning when a tsunami starts rolling toward land.

Global Seismographic Network (GSN) is a permanent digital network of 150 land-based and ocean-bottom seismometers positioned in earthquake prone locations around the world, and connected by a telecommunications network. GSN is a partnership among USGS, the National Science Foundation, and Incorporated Research Institutions for Seismology (IRIS), a consortium of 100 worldwide labs and universities. Although US based, GSN is fully coordinated with the international community. GSN stations are operated by USGS and UC San Diego. The network determines location and magnitude of earthquakes anywhere in the world as they happen. The data is used for emergency response, hazard mitigation, research, and tsunami early warning for seafloor locations.

Deep Ocean Assessment and Reporting of Tsunamis (DART) is the main component of an international tsunami warning system. The DART system is based on instant detection and relay of ocean floor pressure changes. DART stations consist of an ocean bottom sensor that picks up changes in pressure as the tsunami wave passes and sends the data to a nearby communications buoy, which transmits it to a satellite, which in turn relays it within seconds to tsunami warning centers around the world.

The US has deployed 39 DART stations in the Pacific, Atlantic, and Caribbean. Australia and Peru have also installed DART systems, and since the 2004 Indian Ocean tsunami that killed over 200,000 people, the nations bordering the Indian Ocean have cooperated in the installation of 6 Indian Ocean DART stations, along with 17 seismic satellite stations. The DART data, along with GSN and satellite data, flow into two major tsunami warning centers: the Pacific Tsunami Warning Center in Ewa Beach, Hawaii, and the West Coast and Alaska Tsunami Warning Center in Palmer, Alaska. It is the job of the tsunami warning centers to issue alerts and warnings to population centers in the path of a developing tsunami.

Although the GSN and DART systems have proved effective, NASA is testing a GPS system that can spot the epicenter location and earthquake magnitude 10 times faster, giving those in peril extra seconds and minutes to evacuate before the tsunami strikes land. NASA is still testing the system.    

 

  

Storm Surge — the Big Killer

When a hurricane strikes land, the storm surge can be more deadly than the storm’s violent wind. Tropical cyclones – called hurricanes in the Atlantic, typhoons in the Pacific, and cyclones in Australia and India – have killed over 1 million people in the past hundred years. The majority of those deaths are attributed to the surge component of the storm.

Typhoon Haiyan hit the Philippine Islands city of Tacloban on November 11, 2013, with a wind speed of 195 mph (315 km/h), the strongest landfall speed ever recorded. Over 5,000 died and the city was leveled. The savage wind took its toll, but it was the 20 ft. (6.6m) wall of ocean water surging more than a mile (1.6 km) inland that took most of the lives.

When Superstorm Sandy came ashore in New Jersey and New York in late October, 2012, the wind speed was only 115 mph (185 km/h), but the storm was so massive it pushed a 14 ft. (4.4m) storm surge far inland, killing more than 100 and wiping out or badly damaging thousands of homes. Reconstruction costs have reached $70 billion.

In August, 2005, Hurricane Katrina, a Category 3 with a wind speed of120 mph (192 km/h) struck New Orleans and Gulf Coast cities in Louisiana, Mississippi, and Alabama. Although the wind did some damage, the storm surge with waves as high as 28 ft. (7.5m) wiped out shoreline communities, and breached New Orleans’ levees, flooding the city, and causing most of the 1,800 deaths.

Some of the most destructive storm surges have occurred in Bangladesh and India. The northern end of the Bay of Bengal is funnel shaped, and storm surges become tidal bores that sweep many miles inland. The Bhola cyclone in 1970 produced a storm surge of 35 ft. (11m), taking 500,000 lives in Bangladesh. The largest storm surges ever recorded took place in India in 1839 when a 40 ft. (12.2m) surge killed 300,000; and in Bathurst Bay, Queensland, Australia, where a 42 ft (12.8m) surge killed 400 in 1899. It was reported at the time that dolphins and fish were found atop the cliffs surrounding the bay.

A storm surge is created by the storm’s high wind piling the ocean’s surface higher than ordinary sea level. Low pressure at the center of the weather system has a lifting effect and aids in the buildup of the sea and the energy of the surge.

People living near the shoreline in tropical storm-prone areas should be prepared not only to protect property against the high wind, but also be aware of storm surge danger, and prepared to evacuate before the storm makes landfall.       

Will Nuclear Fusion Power the World?

Nuclear Fusion holds great potential as a clean power source that might someday power the world. Unlike nuclear fission, nuclear fusion poses no radiation dangers or waste storage problems. The aim of fusion is to create an artificial sun — a superhot plasma that replicates the composition and heat of the sun — and to use the harnessed heat to operate steam generators that make electricity.

Scientists at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory have taken a step closer to the goal of achieving ignition, the point at which the energy released by the fusion of one atom causes a self-sustaining chain reaction, the stage needed to create the sun-like plasma.

By focusing 192 powerful laser beams on a tiny fuel pellet made of the hydrogen isotopes deuterium and tritium, the NIF researchers, for the first time, have achieved a stage of fusion in which the amount of energy released by the nuclear fusion reaction was greater than the amount of energy that went into the pellet. Achieving ignition, the final step, will require an ultra high level of precision in every phase of the process, including pinpointing the laser beams and perfecting  the fuel pellet. By continually refining the process, the research team is confident they will reach ignition.

When ignition is achieved, a way must be found to contain a plasma mass as hot as the sun (3.5 million degrees Fahrenheit, 2 million degrees Celsius). Since there is no material container capable of withstanding such temperatures, other means have to be developed. One solution is to keep the hot plasma out of contact with the walls of the container by keeping it moving in a circular path by means of magnetic force. The process is called magnetic confinement.  A magnetic confinement test reactor has been constructed at Princeton University. It uses a combination of two magnetic fields to confine and control the plasma. Since nuclear fusion plasma has not yet been created, the Princeton reactor has not been fully tested.

Assuming ignition is realized at some point in the near future, it will still be many years before nuclear fusion moves from the lab to commercial application. But when it does, it might very well be the breakthrough that brings clean, plentiful, inexpensive power to the world.