New Kindle Pricing

All four of Gordon’s novels on Kindle are now priced at $2.99 each.

Introducing Glory Zone

The momentum builds to a breathtaking climax in Gordon’s new novel Glory Zone, a spellbinding story about a future world of body-part clone banks, gene cures, flying prying eyes, perpetual war fought by the old, courageous resistance to oppressive power, and love found late in life.

Gordon’s Blog

Can Asian Typhoons Hit the USA?

Major tropical storms with high wind speeds and heavy rain have different names in different parts of the world. They are hurricanes in the Atlantic and the Gulf of Mexico, and around Baja California. But In the western Pacific they are called typhoons. We generally think of hurricanes impacting the Caribbean, the eastern seaboard, and the gulf coast; and typhoons striking the Philippines, Taiwan, and the southern coast of China.

But once in a while, a typhoon that starts in Asia, instead of following the normal southern track, will drift north into the jet stream and travel 5,000 miles (8300km) on a path south of the Aleutians, to eventually hit the west coast of the United States.

That’s what happened on October 15, 2016, when Typhoon Songda slammed into the coasts of British Columbia, Washington, and Oregon.

Typhoon Songda started as a low-pressure system in warm tropical waters southwest of Hawaii on October 3. It drifted west toward Japan, where it developed into a tropical storm on October 8. It strengthened into a typhoon on October 10. According to the Japan Meteorology Agency, Songda reached its peak southeast of Japan as a Category 4 typhoon on October 11 with wind speeds topping 150 mph {250km/h).

Typhoon Songda then drifted north into the jet stream and traveled at the amazing speed of 60 mph (95km/h) eastward to strike the Pacific Northwest 4 days later. By the time the storm reached the US west coast, its winds had diminished to 50-60 mph (85-100km/h). No storm-related fatalities or injuries were reported, but power lines went down and transformers shorted out, leaving thousands of people in Washington and Oregon without electricity for a short period of time.

According to the meteorologists at the University of Washington, typhoons don’t hit the US mainland very often, but they can cause a lot of damage when they do. Seven of the most severe storms to hit the Seattle area over the years were attributed to typhoons. The most damaging was Typhoon Freda that struck the Washington coastline on Columbus Day, October 12, 1962. That storm packed wind speeds of 110 mph (185km/h). 50 people died in the storm and the wind flattened vast areas of forest.

The US being susceptible to both hurricanes and typhoons is reminiscent of the old story of the fighter who says, “If my right fist don’t getcha, my left one will.”









The Birth of Hurricane Matthew

Hurricane Matthew. Where did this monster storm start? How did it grow so big?

Matthew started as a tropical wave, an elongated low pressure system, off the west coast of Africa. The wave drifted west into the Atlantic Ocean, passing south of the Cape Verde Islands 350 miles (570km) from Africa. Thunderstorm activity increased as it moved across the Atlantic into the warm 85° waters of the Caribbean.

As the system approached the Lesser Antilles, a volcanic arc of islands that runs from the Virgin Islands to Grenada, and marks the dividing line between the Atlantic Ocean and the Caribbean Sea, tropical storm force winds became associated with the thunderstorm activity, although the wind circulation had not yet organized into a tropical storm.

On September 28, the National Hurricane Center confirmed that the storm circulation had closed, and named it Tropical Storm Matthew with wind speeds of 58 mph (93km/h). On September 29, as the storm moved northwest, wind speeds increased to 75 mph (125km/h) and by September 30 the circulation center of the storm closed up into an eye.

At that point, the storm quickly intensified, doubling the wind speed from 80 mph (130km/h) to 160mph (260km/h), a Category 5 hurricane.

Matthew’s intensity dropped to a Category 4 as it approached Haiti. It struck Haiti straight on with 145 mph (240km/h) wind, torrential rain, and storm surge flooding. Reports indicate loss of life exceeding 1,000, and devastating loss of homes, crops, roads, and infrastructure.

After blowing through the Bahamas with minimal damage, the storm intensity dropped to a Category 3, then a 2, and by the time it turned north 30 miles off the coast of Florida, it was down to a Category 1, but the outer bands packed heavy rain and 75 mph (125km/h) winds that caused extensive damage, and flooded St. Augustine and Jacksonville. A million people in Florida suffered power outages.

Matthew pounded the Georgia coast, especially the Savannah area, and then made landfall in South Carolina as a Category 1 hurricane with sustained winds of 105mph (240km/h), flooding downtown Charleston with extreme rain and a 6 ft. (2m) storm surge.  Close to a half million there lost power. Hurricane Matthew was the first hurricane to make landfall on US soil since Hurricane Ike in 2008.

The storm moved north into North Carolina with heavy rain: 16 inches (41cm) in Tar Heel and 15 inches in Goldsboro, causing massive flooding. Rivers are expected to overtop their banks by midweek. So far, 900 people have been rescued from rooftops and trees in North Carolina. 800,000 lost power. In Virginia, heavy rain caused flooding in Norfolk, Virginia Beach, and Hampton Roads.

The death toll for the storm in Florida, Georgia, Virginia, and the Carolinas stands at 26. Property losses are expected to be in the billions.

As this is being written, Hurricane Matthew has headed out to sea and has been downgraded to a tropical storm with sustained winds of 75 mph (125km/h).The National Hurricane Center predicts Matthew will next make a U-turn onto a southwestern track toward the Gulf of Mexico.


Global Warming Info For Doubters

For those who still doubt or deny the existence of global warming, or who are not convinced that burning of fossil fuels is contributing to the heating of the planet, here are a few facts and figures* to consider:

Land Temperatures: 2016 marks the 40th consecutive year that the average global temperature has been above the 20th century average. The January-July 2016 global land surface temperature was 1.66°C (2.99°F) above the 20th century average. 15 of the 16 warmest years on record have occurred since the year 2000.

Sea Surface Temperatures worldwide have mirrored the year-to-year increases in land temperatures. The January-July 2016 ocean surface temperatures were 0.79°C (1.42°F) above average, the warmest in the last 137 years.

Sea Level Rise has been slow but steady, having risen 7 inches (17.78cm) since 1900. The UN estimates an additional 2.5 to 6.0 foot sea level increase by 2100, depending on how rapidly the ice caps and glaciers melt. Some of the Marshall Islands and other low-lying atolls already have been vacated due to sea level rise. Miami has been flooding at high tide.

Ice Caps & Glaciers are melting and shrinking fast. The Greenland Ice Sheet is losing ice at the rate of 270 billion tons a year, and glaciers around the world lose another 400 billion tons each year. 

Ocean Acidification: The world’s oceans absorb a quarter of all CO2 emissions from fossil fuel burning. When CO2 mixes with seawater, a chemical reaction increases the acid content of the water. Ocean acidity has increased 30% in the past 200 years, softening the shells of oysters, clams, and other calcifying species, threatening the world’s food chain, and eroding coral reefs. 

Increase of the CO2 Level in the atmosphere caused by the burning of oil, gas, and coal has increased from 280 parts per million (ppm) preindustrial, to over 400 ppm, creating a greenhouse effect that radiates heat back to earth.

Storms, Floods, & Droughts get more robust and last longer as the planet’s oceans, land, and air get hotter.

Snowpack Levels in mountain ranges throughout the world, including the Sierra Nevada, the Rockies, the Alps, and the Himalayas are getting thinner and melting faster, providing less water to populations relying on the runoff.

Carbon Emissions into the atmosphere from the burning of oil, coal, and gas exceed 9.7 billion tons per year. 97% of publishing climate scientists around the world concur that the rapid increase in global warming is due, at least in part, to human activity, namely the unrestrained burning of fossil fuels. 200 worldwide scientific organizations hold that climate change has been caused by human action. Unfortunately, the heating of earth over the past 100 years indicates the planet will keep getting hotter until the burning of fossil fuels to run our cars and factories can be replaced by non-polluting alternative sources of energy such as wind and solar.

 *Data as reported by NASA, NOAA, the UN Intergovernmental Panel on Climate Change, and as published in scientific journals.

A Tale of Two Earthquakes

On August 24, 2016, at 3:36 a.m. local time, a magnitude 6.2 earthquake struck Central Italy, taking 296 lives. On the same day, a few hours later at 5:06 p.m. local time, a magnitude 6.8 earthquake rattled the country of Myanmar, also known as Burma. While the magnitude was much stronger, only 4 people died in that quake even though many buildings were damaged and a priceless cultural heritage site destroyed.

The big differences? Geographical location, depth of the epicenter, and type of building construction.

The Central Italy quake hit near a densely populated area at a shallow depth of only 10km (6 mi.) under villages that still had very old stone and brick buildings never retrofitted to earthquake safe standards. The shallow quake, rated IX, or violent, on the intensity scale, shook the older buildings apart, burying almost 300 people in rubble as they slept. The town of Amatrice and surrounding villages were filled with tourists who had come for a festival that was to start that same day.

The Central Italy earthquake zone in the Apeninne Mountains, where three tectonic plates meet, is a complex area geologically. The Africa Plate is still converging (shoving into) the Eurasian Plate, while the Adriatic Plate is pulling away from the Eurasian Plate, creating a spreading zone down the Po Valley. When the pulling apart released long-stored fault line tension, one side of the fault line dropped suddenly, creating the shockwave.

The Myanmar quake epicenter was located in a thinly populated area of Central Burma, at a depth of 84km (52 mi). The maximum intensity of the quake was rated VI, or strong, but not severe or violent. As a result, a few buildings near the epicenter collapsed and others were damaged, but loss of life and major damage were held to a minimum.

This earthquake was located on a strike-slip fault line marking the convergence of the India Plate and the Eurasian Plate. The India Plate is moving briskly north in geological terms, against the Eurasian Plate moving slowly south. As the two plates bump together and try to slide past each other, horizontal stress builds up until some weaker point in the fault line gives way. The sudden release of tension causes sideways slippage triggering the shaking motion. This fault line is similar in structure to the San Andreas Fault that runs the length of California.

Whether an earthquake is caused by Normal Faulting as in Central Italy, or a strike-slip fault, or a megathrust that occurs in ocean trenches and can reach magnitude 9.0 and higher, the amount of resulting damage depends on what a real estate agent would call location location location.



Floods, Fires, & Global Warming

From August 12 to 17, 2016, thirty parishes in and around Baton Rouge, Louisiana, were hit by a massive rainstorm that resulted in the worst flood in the history of the area. In a 24-hour period, more than 2½ ft. (31.39 in.) (80cms) of rain inundated the town of Watson, a few miles north of Baton Rouge. The rain pounded the area for days, creating deep lakes where houses once stood. People had to be rescued off rooftops by boat and helicopter. 60,000 to 100,000 homes were reported to be lost or badly damaged. 13 people died. 20,000 were evacuated, and 3,000 are still living in public shelters. Recovery will take many months and cost billions of dollars for repair and reconstruction.

According to NOAA, the atmosphere in the area was supersaturated with near-record amounts of moisture sucked up from the warmer than normal waters of the Gulf of Mexico. When a low- pressure system moved in creating a storm system, the “highly precipitated” air came down in the form of torrential rain, resulting in what was termed a 500-year flood.

The National Academy of Science states, “Heavy rainfall is influenced by a moister atmosphere, a direct consequence of human-induced warming. As the atmosphere warms, its ability to retain water vapor increases.” A climatologist at Texas Tech explains, “Louisiana is always at risk of flood naturally, but climate change is exacerbating that risk, weighting the dice against us.”

2,000 miles west, at the same time the Southeastern US was dealing with too much water, California was in its sixth year of drought and dealing with its worst wildfire season in many years. Through the middle of August, wildfires had burned 200,000 acres (809km²) of forest and brush land, destroying over 1,000 structures and costing 7 lives. And the wildfire season extends for another 3 months and beyond.

In California, the problem is too little moisture instead of too much. A research scientist at NASA’s Goddard Institute said, “Climate change has exacerbated naturally occurring droughts, and therefore fuel conditions. The worse the drought, the more of a tinderbox forests become.”

As the planet continues to warm, events such as these will occur more often and become more extreme. Catastrophic floods are occurring every 5 or 10 years now instead of every 500 or 1,000 years. The wildfire season in California has increased by 78 days since the 1970s. Something has changed, and at least part of that change can be attributed to global warming.

Unless we can put the brakes on carbon emissions by quickly phasing to non-polluting power sources such as wind and solar, earth will continue to heat and set us up for more and more climate-related disasters.

Quiet US Hurricane Season — So Far

Four named tropical storms have developed so far during the 2016 hurricane season, but none have done major damage to US coastal cities.

On May 29, Tropical Storm Bonnie weakened to a tropical depression before making landfall near Charleston, South Carolina. Heavy rains associated with Bonnie caused local flooding and treacherous rip currents along the Southeast US coastline. One person drowned in North Carolina and another in Florida.

Tropical Storm Colin came ashore in the Big Bend area of Florida on June 7, triggering heavy rain and flash floods. 4 people drowned due to rip currents along the beaches of the Florida Panhandle.

On June 21, Tropical Storm Danielle with wind speeds of 45mph (75km/h} hit Veracruz, Mexico, closing the port and flooding areas, requiring the evacuation of 1,200 families.

Hurricane Earl struck Belize in Central America on August 4. Earl, with wind speeds of 80mph (130km/h), regenerated and hit Veracruz on August 6, where a landslide killed 3 people.

Colorado State University and NOAA both forecast an average hurricane year in 2016, made up of 12 to 15 named storms including 6 hurricanes. The two main factors leading this forecast of a near average season are the development of a weak La Niña and cooler than normal North Atlantic sea surface temperatures.

When and where the storms will make landfall is not part of the forecast. According to NOAA, historically 1 to 2 hurricanes come ashore in the US each season, although the number making US landfall has been below average for the last decade.

The hurricane season traditionally runs from June through November. However tropical storms can and have occurred in other months, some bringing heavy property damage and loss of life. As of this writing, there are still many weeks left in the 2016 hurricane season. Whether all or none of the remaining predicted storms will occur is up to Mother Nature. But just in case, those living on or near the Eastern Seaboard and Gulf Coast should be prepared.